## SPELECNIR -Spectroelectrochemical Instrument NIR



Metrohm DropSens provides you with one instrument combining Light source (VIS-NIR: 360-2500 nm Tungsten halogen), a Spectrometer (Wavelength range: 900-2200 nm) and a Bipotentiostat/Galvanostat ( $\pm$  4 V DC potential range,  $\pm$  40 mA maximum measurable current).

All the components are perfectly fitted and synchronized, thus offering for the first time in the market a fully integrated spectroelectrochemical instrument where both measurements- electrochemical and optical- are accurately synchronized.

#### **Key features**

- One software: DropView Spelec for Windows
- Synchronized electrochemical signals and spectra
- Real Time spectra
- Dark and blank spectrum subtraction
- Counts, Absorbance, Transmittance and Reflectance measurements and calculations
- Automatic and manual shutter control
- Selectable integration time
- Data treatment and analysis

### **DropView SPELEC Software:**

Advanced data collection and treatment

- Real time panel that collects the generated spectra during the electrochemical measurement and continuously at any time.
- Plot of Optical Spectra vs Electrochemical curves at a specified wavelength: voltabsorptogram, chronoabsorptogram, derivated ones.
- Individual Information for each spectrum and electrochemical curve.
- Selection of spectra captured within a selected EC range, spectrum associated to a specific EC point.
- Plot overlay, peak integration, smoothing (all raw data spectra).
- 3D plotting of curves, experiment film.
- Export to .csv all synchronized data.





# SPELECNIR -Spectroelectrochemical Instrument NIR



Workspace allows to combine in the same window electrochemical and optical data (cyclic voltammogram in blue, derivative voltabsorptogram in red).

### **Technical specifications**

| General specifications        |                                              |
|-------------------------------|----------------------------------------------|
| Power                         | 5 V DC 4A                                    |
| PC interface                  | USB                                          |
| LED indicators                | Lamp Power                                   |
| Dimensions                    | 25 x 24 x 11 cm (L x W x H)                  |
| Weight                        | 2500g                                        |
| Light Source                  |                                              |
| Wavelength range              | 360-2500 nm Tungsten halogen                 |
| Spectrometer                  |                                              |
| Detector                      | InGaAs photodiode array 256 pixels TE cooled |
| Wavelength range              | 900- 2200 nm                                 |
| Integration time              | 1 ms to 2s                                   |
| Optical resolution            | ≈ 17 nm FWHM                                 |
| Signal to Noise Resolution    | 10000:1 (at 10 ms integration time)          |
| Fiber optic connector         | SMA 905                                      |
| (Bi)potentiostat/Galvanostat  |                                              |
| Operating modes               | BiPotentiostat, Potentiostat, Galvanostat    |
| DC-potential range            | ±4V                                          |
| Maximum measurable current    | ±40 mA                                       |
| Current ranges (potentiostat) | $\pm 1$ nA to $\pm 10$ mA (8 ranges)         |
| Applied Potential Resolution  | 1 mV                                         |
| Measured Current Resolution   | 0.025 % of current range                     |
|                               | 1 pA on lowest current range                 |
| Applied Current Resolution    | 0.1% of current output range                 |
| Measured Potential Resolution | 1 pA on lowest current range                 |

The equipment can also be used independently as a Spectrometer or as a Bipotentiostat/Galvanostat.SPELECNIR can be used with standard cuvette holders or spectroelectrochemistry cells, but also with innovative DropSens cells and screen-printed electrodes.

